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PROBLEM

Obtain optimum realizable automatic detection methods for future Fleet use.
Specifically, develop distribution-free radar detectors for antijamming properties. For

this purpose, define and investigate the properties of a statistic which is used to deter-

mine whether a sample has extreme values. Investigate whether this statistic has the
property of achieving a preassigned probability of falsely rejecting the null hypothesis.

Compare the properties of this new statistic to those of the well known Mann-Whitney-

Wilcoxon U-statistic and suggest some radar applications.

RESULTS

1, A distribution-free detector (statistical test) is defined. Detection is based upon
the sensing of extreme values of the radar signal.

2. The test is compared to the Mann-Whitney-Wilcoxon test. It is found that the

new detector, which is distribution-free with respect to the class of distributions that
are symmetric about zero, can achieve closely a preassigned probability of falsely reject-
ing the null hypothesis when it is true provided the size of the sample is large enough.

Also, if the sizes of two independent samples are sufficiently large, the detection prc.e-

dure using the Mann-Whitney-Wilcoxon U-statistic yields the same probability results as
those of the new detector using one sample.

3. The detection procedure seems to be poor in one radar application (against single
targets) but relatively good in another (against multiple targets).

ADMINISTRATIVE INFORMATION

Work was performed under SF 11.141.006, Task 0672 (NELC DI21), by the

Information Sciences and Signal Processing Division. The report covers work from

June 1968 to January 1969 and was approved for publication 20 August 1969.
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INTRODUCTION

In most of the signal detection problems treated in the literature, the physical and

statistical characteristics of the signal and noise are well enough known that the func-
tional forms of their distributions can be stated and parameters of the distributions can be
specified. Frequently, though, it is pozsible only to make general assumptions concern-

ing the forms of the distribution functions of noise and signal. We must then fimd a
statistical testing procedure which can distinguish between the signal-present case and
the noise-only case on the basis of that small amount of information.

Scope of Report

In this report we discuss the problem of signal detection in a sample of size n
under the assumption that signals arise from a stochastically larger population. Such a
problem occurs in the radar ECM environment. The time element in signal detection
makes the problem relevant. More specifically, the equivalent statistical problem we
wish to discuss is that of deciding whether extreme values in a sample come from the

same distribution as the main body of the sample.
In general, a statistical decision procedure has the property that the ,ror of reject-

ing the null hypothesis when it is true (fase-alarm probability) can be controlled. For
our consideration this means that we wish to control the error of deciding that extreme
values are present when actually no extreme values are present.

We describe a distribution-free procedure for determining the presence of extreme
values on the basis of a single sample of size n, such as uta from a multiple-range-bin
radar on a single pulse. A statistic S, based on a sample of size n, is defied and its prop-
erties are investigated, especially the property of controlling the error of incorrectly
rejecting the null hypothesis.

It is shown that the statistic S is distribution-free over the class of cumulative con-

tinuous distribution functions which are symmetric about zero. A comparison of per-
formance is made with the well known Mann-Whitney-Wilcoxon U-statistic. Some
applications are presented.

Preliminaries

Any distribution-free decision that a value is extreme must be based only on com-

parison with other sample values. For example, we compare the k largest values or the
q smallest values with the remaining values and on the basis of this comparison make a
decision as to whether or not extreme values are present in the sample. The source of

our data is a sample of size n (x1, ... , xn). We restrict ourselves to the problem of
detecting large extreme values because of the nature of the applications we wish to
make. It is easy to see that if we sample simultaneously from two populations, one of
which is stochastically larger than the other, we can expect extreme values to occur
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more frequently than if we sample from only one population. Therefore, we formulate
our hypotheses as follows:

H0 : (no signal). x,, i = 1, ..., n has distribution F(x), where F(x) = I - F(-x); that
is, the distribution of x is symmetric about zero.

H1:. (one or more signals). Some proportion p of the sample has distribution G(x)
where G(x) = F(x-a), a > 0, and the rest of the quantities x come from the population
whose distribution is F(x).

This means that we are sampling either from one population or from two popula-
tions, one of which is stochastically larger than the other; that is, G(x) is stochastically
larger than F(x); (F(x) G(x)).

With the above formulation of the hypotheses we wish to prove the following lemmas.

LEMMA I., Given a random sample of size n, n = 2m, where each x., i = 1, ..., n has the
distribution F(x) of Ho, then g(y, ... , Y2,) = g(Y2. ... IY1) and the distribution of

Yi, ... , -Y, is the same asym+l .... yn.

Proof: g(Yl ... = nY2 ! )n(f(Y) ... f(Y2m) n! f('Y2)"' .f(-Y 2,) .(2 m.. -Y)

The second part follows.

LEMMA IT. Under HO,
I

Pj'Yj>Yn./1= (kk'l) (1/2)+',whereyl, ...,y, are the order statistics and

k=0

as in Lemma I,n = 2mt<m,j<m-l, andy,<- 0.

Proof: P n! L f I0F( - F(y)jn+')

[ -F (yn,./)j f (YI) f(Yn./) 4Yn-idY,

Using integration by parts, we obtain

(n-i-j)!j!( I I IF(Y1i+'-' 11-2F(yi)1n'1 +], fY 1 [F(Yn')-F(y1)n'-'

I!-F(yn-)j]I' I F(yi)] l f(y,,.I) 4y._i I f(Yi)dyi]

Applying integration by parts to the inner integral repeatedly yields
I

n/1) -1 (ki (k+i'2'"'..(01' (kn+i',) [F(yi)]k~i-l 1-2F y) n' i -k

f(y1) dy,
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Letz1-21(Y) Thenwehave

j (k 'I' I I-I-! /n-1 Z "-i-k z / (l/ 2)k+i

(ii!~ k! k+i-1/o(2) 2 k. 1/2
k=O k=O

which was to be shown.
It should be noted the probability P-Y1 > Yn- I is distribution-free with respect to

the class of distributions which are symmetric about zero. It is not distribution-free, how-
ever, with respect to the class of distributions symmetric about a point other than zero.

LEMMA II, Using the same hypothesis as in Lemma II, except that i < m, we have

Proof., Pn! 0 YjYn
P -Yi+i <Yn- < Y, I = (i-l)(n-i-j-2)!! f I fJYn-(

I1-F(,).J yn-i-n(i-)1i f(fff(.,), d(,,-,)

n! u _+ y) ' -F y -)

Using integration by parts gives us the result

n, 0 IIF(y- f'+b' /[2Il-2F(y)l]" + 1/2 fY1 fF(&)1I1

I 2F(yp,fJ. n4, l,.y, 4 '] f-(y,,.,) dy,,., I f(y,) dy,

Repeated use of integration by parts produces the result
/

ff_ )L° (k+i-l) (k+i-2) ... (k+l) Ikn-',) [F(y,)] +  
_

We let z 1-217 using a method described in reference 1* yields

which was to be shown.

It should again be noted that the probability P I-yi+I < Y .1 < -Yi is distribution-
free with respect to the class of distributions symmetric about zero and no other point.
These lemmas are used in DISTRIBUTION OF S.

*See REFERENCES.
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If we let A be the event -Yi >Yn- > -i+ 1 ; and let B be the event -y, , >yn-,; then
AUB is the event -yi >yn-" Since A and B are mutually exclusive, P[AUBJ = P[A ]
+ P(BI or

\ (1/2)k+i = f7 (112)k+l+i+(i+) (l12)i+ +1

k k
k=0 k=0

The above is shown analytically.

(k+I) 1,2)+ = ( ) (l/2)k+1 + k+i-l (1/2)k+l

k=0 k=0 k=1

We let k-I =y in the sezond summation on the right; then we obtain

(k il(l2 k+l =  (k1i) (12k+l + Y+i )(l  k+ I

\k k ,y

k=0 k0 y=0

i /
- > (k+i-l)(1/ 2 )k+l+ (Y;+i)(/ 2)Y+2-(i;)( 1/2 )+2

k=O y0O

I Rearranging terms yields

/ ~i + / ka- kl2
1/=k(/)~ WJ (1/2)k + I\ (1/2)1+'

k=0 k=0

We multiply both sides of the last equation by (1/2) ' 1 to obtain the desired result.J

THE STATISTIC S I ,

Lemma 11 of reference 2 strongly influences the definition of the statistic S which
we shall shortly present. To this end, then, we consider an n-dimensional random sample

of size one, xI ... '"'n' where each x, has the distribution F(x) as stated in H0 and where
n = 2m. We form the order statisticsyP ,Y2, ... ' yn, and change the algebraic signs of the

first m order statistics to get

-Y1,-Y2, ... "Ym'Ym+l ' P .Yn"

Let us write the sample as wI ... I Wm 'Ym+lI.. I Yn" If we now order the quantities w
and the quantitiesy, we get an arrangement which may look as follows:

Ym+l < W m < Wm- <Ym42 < "" <Yn'

6



This is just one of the possible arrangements. We now define S as

n
S >I R(Y,)

i=m+ 1

where R.,_ is the rank ofy i in the ordered sample of w andy. It is easily seen that

<S < (ml). The second sum occurs when all the w are less than all they,
2 2

and th ,irst sum occurs when the situation is just reversed. IfH 0 is true, we should expect
the w to be randomly placed between the y. If the w and y actually alternate,

S = m(m+l) or m 2 , depending on whether we start wvith a w or a y., Because of H1, we
should expect S to be larger under H, than under H0 . For this reason the decision rule
is as follows:

Reject H0 if S > X where X is an integer so chosen as to yield a false-alarm probability

which is less than or equal to a.

DISTRIBUTION OF S

By definition, S is the sum of ranks - that is, of positive integers and the same
value of S can be obtained by adding together different integers.

The definition of S, therefore, demands that we count the ,umber of partitions of
the integer 2 which belong to tie range ofs;m~.~l) _ R in(3m+1) , with the restric-

2 2
tion that the number of components in each partition is m. The generating function for
enumerating partitions with unequal parts by number of parts is (page 1 13, reference 3):

G(ta) u(tk)ak

kO0

where u(t,k) is the generating function for partitions with k unequal parts. Therefore, let
us define Gb n(ta) as:

n-b+1

Gbfn(t'a) u(tk)ak

k=O

Gb,n(t,a) is the function for enumerating partitions of an integer q with unequal parts by
number of parts where the smallest part is greater than or equal to b and the largest part
is less than or equal to n. The function u(t,k) is the generating function for partitions
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II

with k unequal parts with the restrictions mentioned for Gbn(ta). This leads us to the
following theorem:

THEOREM I. If in Gbn(ta) we let k = m, we obtain

u(t,m) = (m+b1n+ 1) (tM+b2tn+ 1) °"(tb-tn+ 1)
(1-t )(l.-t2) ... (I1-tm)

Proof. Gb,n(tat) = (l+atb+ 1)... (I+atn+ 1) and (l +atn+) Gb,n(ta)

= (I+ath) Gb,n(tat), so that

n-b+1 n-b+1 n-b+1 n-b+1

Slu(tm)am + u(tm)am ltn+l = I u(tm)amtm + I u(tm)am+l tm+b

mao m=O m0o mao

Making a change of the variable of addition in the second and last summations and equating
coefficients of am results in

ut,M) Il1-t'n =~~ml (1)~--t~

or

u(t,m) = u(t,m.-l) (2)

With u(t,O) = I and repeated iterations of (2), the desired result is produced. Definition:
Let N(b, m, n, r) be equal to the coefficient of t' in the expansion of u(tm) in powers of t.
N(b, m, n, r) is the number of partitions of the integer r into n distinct parts such that all
parts are greater than or equal to b and less than or equal to n. It should be noted that N is
actually a function of only three distinct variables - b, m, and r - since n = 2m. In order
to find 'the distribution of S, we must know the probability of each of the (nM possible
arrangements of the combined orderings of the w andy. If we order the combined sam-
ples of w and y, the result is that we obtain either

a. A run of w, then a run ofy, then a run of w again, etc,, ending either in a w or ay;
or

b. A run of y, then a run of w, then a run ofy again, etc., ending either in a w or ay.

The following theorem produces the probability of a particular arrangement of w and y.

THEOREM II. (1) Under H0

Picondition (b)above (I'3m Yk-' P[Y<Wm <yk+l(1/2)3m -k

n-rk (Wm)

=(1/2) -ak(M+

whereyk,m+l <k <n is the lasty in the beginning run ofy and the rank (wr) is the

rank of (wi) in the combined sample of w andy.
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(2) Under H0

Pfcondition (a) above] = m+k-2) Wj, <Ym+j <:Wk-I\k-I

n-rnk (Ym+l )+1
= (1/2)m+k

-I = (!/ 2 )

where wk, 1 < k < m is the last of the w in the beginning run of w and rank (ym+j) Is
the rank ofym+ Iin the combined sample of w and y.

Proof: The proof is given for the case where n = 6 and m = 3. We then have
Y1' Y21 Y3Y Y41 Y51 Y6
-Y' -'2' -Y3' Y4' Y5' Y6

W 1, W2, W3 , Y4 ,Y 5 Y6

The number of ordered arrangements of the w and y is 20, and they are:

w 3 <W 2 <W1 <Y4 <Y5 <Y6

w3 <w 2 <Y4 
< w, <Y5 <Y6

W 3 < 2 <Y4 <Y 5 < W1 <Y 6

w 3 < w2 <Y4 <Y5 <Y6 < W1
w3 <Y4 < w2 < w1 <Y5 <Y6

w3 <Y4 < w2 <Y5 < Wl <Y6

W3 <Y 4 < w2 <Y 5 <Y 6 < w,

W3 <Y4 <Y5 < w2 < W1 <Y 6

W3 <Y 4 <Y5 <w 2 <Y 6 <W 1

W3 <Y 4 <Y5 <Y 6 < W 2 < WI

Now interchanging w3 withy 4, w2 with y5 , and w, withy 6 yields the other 10 ordered

arrangements. We now consider arrangements which satisfy condition (a) and for an
example consider

w3 <Y4 <W2 < wI<Y 5 <Y6

w3 <Y4 < w2  Y5 < w, <Y6

w3 <Y4 < w 2 <Y 5 <Y6 < W1

w 3 <Y 4 <Y 5 < w2 
< w, <Y 6

w3 <Y4 <Y 5 
< w 2 <Y6 < W1

w3 <Y4 <Y5 <Y6 < ' 2 < w,

Since these arrangements exhaust the ways in which Y4 can lie between w and w2 , and
since each arrangement is mutually exclusive of the others, it is clear that

PIw3 <Y4 <w2 <W1 <Y5< y 61 +,-,+ Pw3 <Y4 <Y5 < Y6 w2 < w1

=Pw3 < Y4 < w 2J= (2 )(1/2)2+2+1 from Lemma Ill.
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Next we wish to show that the above arrangements are equiprobable.

PIw3 <Y4 <Y5 < w2 <Y6 < wi1J P1-y 3 <Y4 <Y5 < 12 <Y6 < -iJ

= 6!f-' f'yfo j 0 _5

6! -Y f-2 f y ' 2Fy)1J f (y4)f 5)f(Y2)f(Y6)f(y 1)dy4dy5 dy2dy6dy1,

since F(y) =I F-)

= f -fi1/2 -2 f(y5)f~'y2)f~y,)f( )dy5 dy2 dy6 dy1

6! f -' 1/4 ~

6! f jY [ !2f(y6).116

6!L 1/6 5 f(Y )(1) dy Y

6!s
32 6!2

PJw3 <Y14< W2 <Y 5 <Y6 < W1J PJ11 3 <Y4 < 12 <315 <Y'6 < -iJ

*6!f f. 6f"f fYj 4 f(Y)f(Y)f(Y(Y(Yf) y3dy 4 dy~dy.dy1

32

PJw3 <Y4 <w2< < 1< <61 = 1jY3 < Y4< 12< 1 < 5 <-Y6J

vS 2fy'4f 3)f( v4) )f(YI)f(Yfv)ddYddvdvd36 1
61fy j6 .Io:Y4

It is easily showni that the other three probabilities all are equal to-L. Therefore, we
obtain the general result 3

P lcondition (a) abovelI (,"*k2j PIWk <y,, I <wk.,I =(1/2)+k-l

The example immnediately gives us the result

(I 12)mk" (I 2 tn~rak(Y M+ I +1

10



In a similar manner we show that

PIcondition (b) above] = (3rm"k-) Pjk <Win<Yk+1J

n-in(10/2)31- k =(1/2) nan(wm) + I

Corollary I

P[ym< < Y <ym+ "l <... <Yl< "<y < m< < (12)m

The proof can also be easily obtained with Lemma II. The distribution of S is

obtained with the next theorem:

THEOREM III. Under H0

P[s=rJ = P[s=r condition (a) is true]

+ P[s=n I condition (b)is true]

=[NO~mn,r) -N(2,^n,r)j (1/2) 3m - 1

m+1

+ I [N(b' m' nr)-N(b+l ' m' nr)]( 1/2 )m +b - 2

b-2

where N(m+2, m,n, r) = 0

Proof: The proof of the theorem follows from the definition of N(b,m,n,r) and

Theorem II.

Definition: X, is the critical integer; that is, P [S>, X1 - a

If a = 106, we need to consider a sample of dimension greater than or equal to 40 to
obtain the desired critical region. The distribution of S for n = 2, 4, 6, 8 appears in
table 1. The mean and variance of S are obtained in the next two theorems.

THEOREM IV

,. I M

i=l j=0 k-0

Proof: Let U I1 ify >n Then Ui n-1 equals the number of times

0 otherwise

the negative y (that is, the w) exceed the positive y, so that S= m(2 U, n and

11
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TABLE 1. DISTRIBUTION OF S.

m=1 n=2 r P[S=r]

1 1/2
2 1/2

m = 2 n=4 3 1/4
4 1/8
5 1/4

6 1/8
7 1/4

m=3 n=6 6 1/8
7 1/16
8 3/32
9 1/8

10 3/32

11 3/32
12 1/8
13 3/32
14 1/16
15 1/8

m=4 n 8 r P[S=r]

10 1/16
11 1/32
12 3/64
13 7/128

14 5/64
15 7/128
16 9/128
17 1/16

18 5/64
19 1/16

20 9/128
21 7/128
22 5/64
23 7/128
24 3/64
25 1/32

26 1/16
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THEOREM V

V[S] = rni ~ (~.1(1/2yc a {r (k 1 /12c+iI

+21=1 /=0 k=O t- 1 =0 k=0

m rn-1 k-ij

+2 22 (+i1) 2)+i
i=3 I -k= 2 q 0

m.1 m-1 k-2 /.1i Oq

+2 (1(12)) 1/2Q+

q0q

+2q I 12q2
VLI I I I UI :J=E (~ q, 1  ~E( 1 l,

mf' 9-1 m k1

+2~ 1,- j=2-),1)q2
I' I i2(

R- m k2 -o nO -

+0k

I ( ) (12)qA
q=13

Proo: SnceS isof he orm. + , ba costat ad w radomvarible an
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But, E[U2 1 =E[U] so

m m-li rnM-i 2V[S kI2 ki1
VI~l= k ()k~ k (l/2)k+

i=1 j=0 k=O i=1 j=0 k=O

+ I E[U,,,.Ukn.
1

If/=£, and nj f n-k, then

E u,' , l,'n-k P P[.Y, > Yn,1 and -Y>y~ 4J 'i >YaIwhena tax n-inkJ.

If n-j = n-k and i R, then

E JI n-1 Ut n-1  [ 1- > Ynq where b =max [j, 2j.
If i > R and n-j > n-k, thenE [u, .u., l UtkI=P 1. , > Y,.
If/< R and n-i > n-k, then

E 1U' n-i Uj' n-k j = 'y <Yn- <'Y J PI'y >Yn.k + P[-y >Y.]"

Substituting the probabilities into the formula produces the desired result.

TWO-SAMPLE COMPARISON

Since the purpose of ordering the n-dimensional sample, then changing the signs
of the first m (n = 2m) values, was to compare half of the sample (the upper half) with the
remaining half (the lower half), it is therefore appropriate to ask how the foregoing
development would appear if we actually used two independent n-dimensional samples.

We therefore wish to prove the following lemmas.

THEOREM VI. Given x(i) .. X(m) and y(j) ..... y(m), two independent m-dimensional

samples of order statistics from a cdf F(x) when F(x) need only be continuous, then

PlXmt x Ym. < mlll m L [F(t)] [I/' [lF(t)]'+/ M dFQ),
Pix Y(-I <x M -11 (-i ('ij7 9 1rnijr

_ M (m )(m) i<m;]j< m

(2m~j) 2

Proof:- With the use of

Pjr'
= kj =(:1) L Fk l (l.F)n'k dG

14



whtre n-I observations have cdf F and one observation has cdf G, rs is the rank of the
observation having cdf G in the combined sample; the theorem can easily be proved.

THEOREM VII. Given the hypothesis stated in Theorem VI, then

km- = km4 1-1) ~

where i <m andj m.

Proof:

Pj(rnIl) >Y(m/)J = L m <X(M-j~l) X/I )

k~m-1

~~X~~rnI+1)J)) UF X(l +1)0(i1)MI
km.I

Mn!

Let u =(F X(ml1+1)) ;then we have

(m-i+) M () u~- ,Umk'ld

-I k tI (/)i

kum-0

M MVM\
(i.1A1k

II



Mi

4i-)7 ---. i- i-

Proof-, urn PIX(mi+l) >Ytm..j) = urn 2i m-+1
M+,l)(k,m-il,

m+ 0 k=m-j (k+m-i+l) (k+m-i+l)

Let g = k-m+]; then we have

Jir (m-1) m-1 which, through a method described inM+0 (2m~g m -0) (2m+g-/i+l)

reference 4, results in > (1-lg ) (1/2 )i'g+'. Now, letting-l w, we obtain

1-0

0 1
(W+i-1) (1 / 2)w+L ' (W+-I) (I/ 2)w+, However, by Lemma 11 this is

PL'Y, > Yn,.

THEOREM IX. Given the hypothesis stated in Theorem VI, then

lim PIX(m0t) <Y(m.J) <X(mi+1) = (i J) (1/2+1+1

(m-0) ()(1)= +

Proof: jim 2 - + ( I) (l/2)''i+l which is obtained by using

reference4 H ~oe Lmi i sisP[-y,+ 1 < j<-yi. As demonstrated, the

refrece4.However, by Lemma III this is P <YmI

distribution of S depends directly on Lemma III and Lemma I, so that for large values of
m, the same values for PI'+' <Yni < 'y Jand P  y >y .,I are obtained in the one. and
two-sample case, and, hence, the procedure of using S leads to the same result. It is known
that if we have two independent samples, the statistic S becomes the Mann-Whitney-
Wilcoxon statistic, which, as is well known, is asymptotically normally distributed.
Because of the great difficulty of obtaining detection probabilities, they are not included in
this report.

APPLICATIONS

The distributions considered in hypotheses H0 and H1 satisfy Lemma I, reference
2, and because of Lemma II, reference 2, a one-sided test was considered. If we are inter-
ested in detecting a single enemy object, such as an airplane, using a radar device, we can
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do better using the statistics considered in reference 2 than the one considered here,
because the statistic S is relatively insensitive to one extreme value in that it does not con-
sider its magnitude. The statistic S is sensitive to enemy objects in the plural - to a fleet
of gun boats, for example, or a number of dense air targets or hostile troops. It would serve
a valuable function therefore in detecting a concentration of the enemy.

A second application is that of intercept of frequency-hopped signals (radar
or communications).

Suppose that the message or radar transmission consists of a number of frequency.
hopped pulses.

FREQUENCY ! - - Ii - -I
I - - -!

TI

! i

TIME

IThe detection system illustrated uses a bank of narrowband filters, each of bandwidth W.
U The output of each filter is energy-integrated over time T, the message length or radar

transmission length. (This could be continuous integration of a moving-window type or
some form of integrate-and-dump - the false-alarm rate depends on the decision rate.) In
the presence of a frequency-hopped signal, a substantial portion of the frequency cells are
occupied at various times during the signal time T.

The distribution of the integrated energy VW(t) is given by the chi-square distribu.
tion with 2 TW degrees in the noise case (reference 5). TW will be very large, and Urkowtz
shows that for large values of TW the normal distribution is a very good approximation to
the distribution of V(t). Since the quantities Yt) have been normalized by the noise
power density for the respective filters, all xwill have approximately the same variance.
Thus, the x, are identically and symmetrically distributed about zero in the noise case. In
the presence of certain types of iterference, this will not always be true. However, the
statistical test described tends to alarm only when a substantial number of resolution cells
are occupied (even at low signal-to-noise ratios), and its false-alarm rate will not increase
appreciably when only one or a few cells have interference signals, even very strong signals
(fig. J). Thus, the false-alarm rate will tend to be constant even in the presence of noise
plus interference.
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CONCLUSIONS AND RECOMMENDATIONS

It has been shown that the statistic S has the property that any value of a can be
closely obtained provided the dimension of the sample is large enough and the underlying
distribution F(x) has the property that F(x) = 1 - F(-x). Also, if we consider two indepen-

dent samples from a continuous distribution F(x) and the dimension of both samples is
large, then the procedure using S leads to the same result in both cases; that is, the case in

which F(x) = 1 - F(-x) and one sample is used and the case in which F(x) is continuous and

two samples are used. The test procedure using S seems to be poor in one radar application

(against single targets) but relatively good in another (against multiple targets). It was also

indicated that S can be used to intercept frequency-hopped signals.

It is recommended that before this new detector is implemented some detection

probability results be obtained either by analysis or by simulation by Monte Carlo methods,

for example.
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